A flexible uncertainty quantification method for linearly coupled multi-physics systems

نویسندگان

  • Xiao Chen
  • Brenda Ng
  • Yunwei Sun
  • Charles H. Tong
چکیده

This paper presents a novel approach to building an integrated uncertainty quantification (UQ) methodology suitable for modern-day component-based approach for multi-physics simulation development. Our “hybrid” UQ methodology supports independent development of the most suitable UQ method, intrusive or non-intrusive, for each physics module by providing an algorithmic framework to couple these “stochastic” modules for propagating “global” uncertainties. We address algorithmic and computational issues associated with the construction of this hybrid framework. We demonstrate the utility of such a framework on a practical application involving a linearly coupled multi-species reactive transport model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY

The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...

متن کامل

CONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY

A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...

متن کامل

Dimension Reduction and Measure Transformation in Stochastic Multiphysics Modeling

In numerous critical areas from across science and engineering, models and simulations share a common base of mathematical formulations and algorithms that are multi-physics, multi-scale and/or multi-domain in nature. The crucial demand for predictive computational results in these areas motivates the development of uncertainty quantification approaches for coupled models that feature multiple ...

متن کامل

A Novel Adapted Multi-objective Meta-heuristic Algorithm for a Flexible Bi-objective Scheduling Problem Based on Physics Theory

  We relax some assumptions of the traditional scheduling problem and suggest an adapted meta-heuristic algorithm to optimize efficient utilization of resources and quick response to demands simultaneously. We intend to bridge the existing gap between theory and real industrial scheduling assumptions (e.g., hot metal rolling industry, chemical and pharmaceutical industries). We adapt and evalua...

متن کامل

Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space

Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2013